A mutation in autosomal dominant myotonia congenita affects pore properties of the muscle chloride channel.

نویسندگان

  • C Fahlke
  • C L Beck
  • A L George
چکیده

Autosomal dominant myotonia congenita is an inherited disorder of skeletal muscle caused by mutations in a voltage-gated Cl- channel gene (CLCN1, 7q35). Here, we report that a mutation predicting the substitution of Gly 230 by glutamic acid (G230E) between segments D3 and D4 dramatically alters the pore properties of a recombinant human muscle Cl- channel (hCIC-1) expressed in a mammalian cell line (tsA201). The G230E mutation causes substantial changes in anion and cation selectivity as well as a fundamental change in rectification of the current-voltage relationship. Whereas wild-type channels are characterized by pronounced inward rectification and a Cl > thiocyanate > Br > NO(3) > I > CH(3)SO(3) selectivity, G230E exhibits outward rectification at positive potentials and a thiocyanate > NO(3) > I > Br > Cl > CH(3)SO(3) selectivity. Furthermore, the cation-to-anion permeability ratio of the mutant is much greater than that of the wild-type channel. Voltage-dependent blocks by intracellular and extracellular iodide help to distinguish two distinct ion binding sites within the hClC-1 conduction pathway. Both binding sites are preserved in the mutant but have decreased affinities for iodide. These findings suggest that Gly 230 is critical for normal ion conductance in hClC-1 and that this residue resides within the channel pore.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Missense Mutation in CLCN1 Gene in a Family with Autosomal Recessive Congenital Myotonia

Congenital recessive myotonia is a rare genetic disorder caused by mutations in CLCN1, which codes for the main skeletal muscle chloride channel ClC-1. More than 120 mutations have been found in this gene. The main feature of this disorder is muscle membrane hyperexcitability. Here, we report a 59-year male patient suffering from congenital myotonia. He had transient generalized myotonia, which...

متن کامل

CLCN1 Mutations in Czech Patients with Myotonia Congenita, In Silico Analysis of Novel and Known Mutations in the Human Dimeric Skeletal Muscle Chloride Channel

Myotonia congenita (MC) is a genetic disease caused by mutations in the skeletal muscle chloride channel gene (CLCN1) encoding the skeletal muscle chloride channel (ClC-1). Mutations of CLCN1 result in either autosomal dominant MC (Thomsen disease) or autosomal recessive MC (Becker disease). The ClC-1 protein is a homodimer with a separate ion pore within each monomer. Mutations causing recessi...

متن کامل

Electrophysiological characteristics of R47W and A298T mutations in CLC-1 of myotonia congenita patients and evaluation of clinical features

Myotonia congenita (MC) is a genetic disease that displays impaired relaxation of skeletal muscle and muscle hypertrophy. This disease is mainly caused by mutations of CLCN1 that encodes human skeletal muscle chloride channel (CLC-1). CLC-1 is a voltage gated chloride channel that activates upon depolarizing potentials and play a major role in stabilization of resting membrane potentials in ske...

متن کامل

ClC-1 chloride channel mutations in myotonia congenita: variable penetrance of mutations shifting the voltage dependence.

Mutations in the ClC-1 muscle chloride channel cause either recessive or dominant myotonia congenita. Using a systematic screening procedure, we have now identified four novel missense mutations in dominant (V286A, F307S) and recessive myotonia (V236L, G285E), and have analysed the effect of these and other recently described mutations (A313T, I556N) on channel properties in the Xenopus oocyte ...

متن کامل

Phenotypic variability of autosomal dominant myotonia congenita in a Taiwanese family with muscle chloride channel (CLCN1) mutation.

BACKGROUND Myotonia congenita (MC), whether inherited in autosomal dominant or recessive form, is caused by mutation of CLCN1 on chromosome 7 and associated with impaired skeletal muscle relaxation after contraction. The basic pathophysiology is the reduction of chloride conductance in skeletal muscles caused by various molecular mechanisms. The cause of the wide phenotypic variability in both ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 94 6  شماره 

صفحات  -

تاریخ انتشار 1997